Process Evolution from the Iron Age to the New Age – A Case Study

A Transition from Stainless Steel and Glass to a Fully Disposable Upstream Process During Clinical Development
Avid Bioservices – Substantial Experience in both Stainless Steel (SS) and Single Use Stirred-Tank Reactors (SUB)

- Considerable experience in cGMP production
 - Over 200 cGMP lots produced to date
 - Stainless Steel bioreactor production since 1997
 - 1st CMO in the west coast implementing SUB production in 2008
- 1,000 liter scale in both SS and SUB
- Significant experience in regulatory inspections with over 17 successful US FDA and European inspections
- Commercial production in SS reactors since 2005

Customer Perspective:
1. Prefer Stainless Steel reactor based processes
2. Prefer SUB based processes
3. Flexible and have no preference
The Case for Single Use Technologies
Disposables – Manufacturing Facility Perspective

Lower initial investment cost

– Less manufacturing infrastructure

– Ease of implementation

• Easy to retrofit into existing facility without building modifications

• Smaller footprint eases space restrictions

• Expand capacity through multiple reactors
Disposables – Process Perspective

• More efficient production processes
 – No cleaning validation reduces turnaround time
• Multi-Product facility risk reduction
 – Eliminate the potential for product cross contamination
 – Eliminates potential reservoirs for virus contaminations

Everything was going along fine until they discovered their HeLa cell line expressed Y chromosome markers.
Disposables – Is Avid Just Drinking the Koolaid

- 57.1% of Biomanufacturing Firms to Focus on Scaling up Single Use Systems to Commercial Manufacturing in 2012
 – Survey conducted by Pharma iQ

- The biomanufacturing community is focused on replacing traditional facilities with single-use systems to improve flexibility, efficiency, and savings.
Disposables – OK its Not All a Bed of Roses

- Leachables and Extractables
- Must show process and product comparability when switching from Stainless Steel to Single-Use Bioreactors
- Robustness of plastic bag construction
- Difficulty of growing lipid dependent cell lines
- Dependency on vendors for single-use bioprocess containers
- Limitation in single-use bioreactor size
 - 2000 L largest available
Solutions to Challenges

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leachable and Extractable</td>
<td>Leachable and Extractable testing performed by manufacturers or contract</td>
</tr>
<tr>
<td></td>
<td>testing labs</td>
</tr>
<tr>
<td>Show process and product comparability when switching from Stainless Steel</td>
<td>Successfully demonstrated comparability between Single Use and Stainless</td>
</tr>
<tr>
<td>to Single-Use Bioreactors</td>
<td>Steel processes with the FDA</td>
</tr>
<tr>
<td>Robustness of plastic bag construction</td>
<td>Single-use bioreactor containers are pressure integrity tested by the</td>
</tr>
<tr>
<td></td>
<td>manufacturer</td>
</tr>
<tr>
<td>Difficulty of growing lipid dependent cell lines</td>
<td>Recent data shows feasibility to grow lipid dependent cell lines in</td>
</tr>
<tr>
<td></td>
<td>Disposable Vessels</td>
</tr>
<tr>
<td>Dependency in vendor single-use bioprocess containers</td>
<td>Integrated Supply Chain Materials Management System working closely with</td>
</tr>
<tr>
<td></td>
<td>vendors to maintain inventory for production campaigns SUB = Stainless</td>
</tr>
<tr>
<td></td>
<td>Steel Bioreactors</td>
</tr>
<tr>
<td>Limitation in single-use bioreactor size</td>
<td>Process improvement to increase yield; SUB manufacturers are continuing</td>
</tr>
<tr>
<td></td>
<td>implementing larger vessels</td>
</tr>
<tr>
<td></td>
<td>Ease of expanding capacity with same process and same SUB size</td>
</tr>
</tbody>
</table>
Case Study: Client That Required Multiple Process Changes During Clinical Development

• **Phase 1 Clinical Trials (20-100 patient trials)**
 – Need to move quickly resulting in limited process development
 – Result was sub-optimal yields yet adequate to support early development

• **Phase 2 Clinical Trials (70-250 patient trials)**
 – Implemented new cell line to improve yields and process potential
 – Must maintain product comparability to Phase 1 material

• **Phase 3 Clinical Trials (500+ patients trials)**
 – Larger trials require up to multiple kg yields
 – Process with improved performance that can be well characterized and validated during phase 3
 – Must maintain product comparability to Phase 1/Phase 2 material
Our Case Study
Process Evolution

• Iron Age
 – Original process – sub-optimal yield (<200 mg/L)
 – Early Iron Age at 300 L
 – Late Iron Age at 1000 L Stainless Steel

• Middle Age
 – Cell line change – Mid Yield (<600 mg/L)
 – Non-disposable inoculum
 – 1000 L Stainless Steel or Single Use Bioreactors

• New Age
 – Optimized medium & process (>2g/liter)
 – Upstream process with new media and feeds
 – Completely disposable inoculum train
 – 1000 L Single Use Bioreactors
Upstream Process Successfully Transitioned to Completely Disposable Process

Iron Age
- Vessel 1
- Vessel 2
- Vessel 3
- Vessel 4
- 300 L Stainless Steel

Middle Age
- Vessel 1
- Vessel 2
- Vessel 3
- Vessel 4
- 100 L Stainless Steel
- 1000 L Stainless Steel

New Age
- Vessel 1
- Vessel 2
- Vessel 3
- Vessel 4
- Vessel 5
- 1000 L Single Use
- 1000 L Single Use
Process Evolution – Regulatory Approach

Iron Age
- Sub-optimal yield
- Early Iron Age (300 L SS)
- Late Iron Age (1000 L SS)

Middle Age
- Change of cell line resulted in mid Yield (<600mg/l)
- Non-disposable inoculum
- 1000 L Stainless Steel or Single Use Bioreactors

Regulatory Filings

Demonstrate Process Comparability

Demonstrate Product Comparability through Analytical Characterization
Comparable Upstream Process between 1,000 L SS vs. 1,000 L SUB

- No significant difference in cell growth or titer

Cell Growth
- Stainless Steel (n=9)
- Single Use (n=4)

Titer
- Stainless Steel (n=9)
- Single Use (n=4)
Product Comparability Demonstrated

<table>
<thead>
<tr>
<th>Lot Release</th>
<th>Additional Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Antigen Binding</td>
<td>✓ Analytical Ultracentrifuge</td>
</tr>
<tr>
<td>✓ Bioburden</td>
<td>✓ C-terminal Sequencing</td>
</tr>
<tr>
<td>✓ Carbohydrate Analysis</td>
<td>✓ Monosaccharide Composition</td>
</tr>
<tr>
<td>✓ Concentration</td>
<td>✓ Neutral Sugar Assay</td>
</tr>
<tr>
<td>✓ Endotoxin</td>
<td>✓ N-terminal Sequencing</td>
</tr>
<tr>
<td>✓ Iso-Electric Focusing</td>
<td>✓ Non-Clinical Pharmacokinetics in Rats</td>
</tr>
<tr>
<td>✓ Ion Exchange Chromatography</td>
<td>✓ Residual DNA</td>
</tr>
<tr>
<td>✓ Monomer Content</td>
<td>✓ Residual Host Cell Proteins</td>
</tr>
<tr>
<td></td>
<td>✓ Residual Protein A</td>
</tr>
<tr>
<td></td>
<td>✓ SDS-PAGE</td>
</tr>
<tr>
<td></td>
<td>✓ Visual Inspection</td>
</tr>
</tbody>
</table>
Iron Age to Middle Age: Comparable Product Peptide Map

- Early Iron Age (300L SS)
- Late Iron Age (1000L SS)
- Middle Age (1000L SS)
- Middle Age (1000L Single Use)
Iron Age to Middle Age Comparison

• No significant difference in **Product Quality Attributes**

• Received FDA approval for:
 – *Manufactured product interchangeably in Stainless Steel and Single Use Bioreactor*
 – *Post process changes (ie. cell line and downstream process)*

• **Provided adequate drug product for several Phase II clinical studies**
Iron Age to Middle Age: Labor comparison

• Turnaround time:
 – Stainless Steel is ~10 days
 • Break down and CIP: 3 days
 • Quality Control testing: 3 days
 • Release for use of next product: 2 days
 • SIP: 1 day
 – Single Use is 1 day
 • None of the above required

• Stainless Steel has considerably higher associated labor costs
Middle Age
- Change of cell line resulted in mid Yield (<600mg/l)
- Non-disposable inoculum
- 1000 L Stainless Steel or Single Use Bioreactors

New Age

• New Age
 - Optimized medium & process
 - Upstream process with new media and feeds
 - Completely disposable inoculum train
 - 1000 L Single Use Bioreactors

Regulatory Filing

Demonstrate Product Comparability
Iron Age to New Age

- Better cell growth with New Age Process
- Significantly increased titer with New Age Process
- No impact on Product Quality Attributes
Product Comparability Demonstrated

<table>
<thead>
<tr>
<th>Lot Release</th>
<th>Additional Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Antigen Binding</td>
<td>✓ Analytical Ultracentrifuge</td>
</tr>
<tr>
<td>✓ Bioburden</td>
<td>✓ C-terminal Sequencing</td>
</tr>
<tr>
<td>✓ Carbohydrate Analysis</td>
<td>✓ Monosaccharide Composition</td>
</tr>
<tr>
<td>✓ Concentration</td>
<td>✓ Neutral Sugar Assay</td>
</tr>
<tr>
<td>✓ Endotoxin</td>
<td>✓ N-terminal Sequencing</td>
</tr>
<tr>
<td>✓ Iso-Electric Focusing</td>
<td>✓ Non-clinical Pharmacokinetics in Rats</td>
</tr>
<tr>
<td>✓ Ion Exchange Chromatography</td>
<td></td>
</tr>
<tr>
<td>✓ Monomer Content</td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓ Residual DNA</td>
</tr>
<tr>
<td></td>
<td>✓ Residual Host Cell Proteins</td>
</tr>
<tr>
<td></td>
<td>✓ Residual Protein A</td>
</tr>
<tr>
<td></td>
<td>✓ SDS-PAGE</td>
</tr>
<tr>
<td></td>
<td>✓ Visual Inspection</td>
</tr>
</tbody>
</table>
Middle Age to New Age
Product Comparability Peptide Map

Received FDA Approval for Late Stage Development
Labor: Non-Disposable vs. Disposable Process

Iron Age to Middle Age
• Labor & Overhead Costs for an entire production run at same scale and same process costs ~ **25-30% less** with disposable process

Middle Age to New Age
• **Requires ~35 hours** for Non-Disposable Inoculum Process
 – Process (clean and autoclave) all spinner flasks for one production run
 – Clean, perform cleaning verification (including testing), assembly, process, and post-use clean
 – Documentation and review of all paperwork

• 3-5 hours of prep time for completely disposable process
Aspect ratios and bioreactor parameters are kept constant for all size reactors making scale down verification prior to process transfer makes it easy and representative.
Summary and Conclusions

✓ Single-use processes are transforming Bio-manufacturing and Avid has embraced this new technology early on

✓ Avid Bioservices Inc. is leading the way
 ➢ Through extensive experience and expertise
 ➢ Active role in making single-use product improvements
 ➢ In constant communication with manufacturers for up-to-date progress in single-use container characterization and robustness

✓ We’re setting the trend
 ➢ Flexible manufacturing scale solutions for all project types
 ➢ Single-Use fleet consists of 1000 L, 200 L, 100 L and 50 L
 ➢ Avid has successfully demonstrated comparability between Single Use and Stainless Steel Bioreactors with the FDA